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I. INTRODUCTION

One measure of the "goodness" of an antenna or sensor array is the sidelobe structure
of the beampattern function when the conventional linear beamformer is used. In this report,
we examine the performance of the adaptive beamformer in terms of spurious peaks in the

array response function by exploiting the relation between adaptive array response and the
conventional beampattern. An expression that provides an approximate relationship between
the array response function for an adaptive beamformer and the conventional beampattern

function in the sidelobe region is developed. The validity of the approximation is examined
using simulations for a variety of arrays including deterministic, randomized, and random
cases. The approximate relationship is used to obtain the probability that a spurious peak in
the adaptive array response exceeds a threshold for random arrays.

The organization of the report is as follows: In Sections II and III, the basic relation-

ships for conventional and adaptive beamforming are established. In Section IV, the approxi-
mate relationship between adaptive array response and conventional beampatterns is deve-
loped. In Sections V and VI, the relationship is validated through simulation. In Section VII,
the spurious peak estimator for random arrays is developed.



I!. CONVENTIONAL BEAMFORMING AND BEAMPATTERNS

The relationship between the beampatterns or power patterns of an array and the

observed array response patterns when using conventional beamforming is fairly straightfor-

ward. For example, when the noise field consists of a single signal from a (multidimensional)

arrival angle 0, the conventional array-response pattern (normalized to 0 dB at 0) would simply

be the conventional beampattern steered at the signal

ISOSlookI . (1)

Here, the vector S represents an ideal plane wave and has the form

exp I < zl, K >)
I c

S = : ](2)
V/N exp i-° < ZN' , > .

The convention in this report will be to use unit norm signal vectors. Frequently, norm-N

vectors are used. When necessary, a factor of N will be explicitly included. The unit vector K

indicates the direction of look or steering angle as well as the direction of arrival of the signal.

Element position vectors for the N elements of the array are zI through ZN. The inner product

is represented by <-,'>. Vectors and matrices are denoted by bold-face characters and *

denotes complex-conjugate transpose.

More generally, we assume that the time-series data at the array can be written as a

vector X(t)= X.(t) Let X(w) represent a Fourier transform vector

XN(tt)

T
I f

X(cu) f I X(t)e- °' tt dt (3)T
0

where the frequency (a is an integral multiple of 21r/ T. The data at frequency w are then

completely described by a cross-spectral matrix R which is formed by summing outer products

of Fourier transform vectors

L
R(W) - X XW(( (4)

L 2=1

If the signal plus noise field consists of K uncorrelated signals Si of power

a2s (i = 1,2,...,K) in noise of power o2- which is uncorrelated from sensor to sensor, then
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K
R Y, No?. SiS* + o2.1(5

i:l(

Another way to write this is

R ADA* +O i, (6)

where A is the N x K matrix of discrete signals

A =[Is S2 ... SK],

and D is the diagonal matrix of signal powers

2

No 
2

2
D=

=0 N K

The conventional beamformer calculates STlookRSlook and peaks in the resulting array-
response pattern are identified as signal arrivals. The power output of the conventional beam-
former with the signal plus noise field of (6) is

PCBF = S iookRSlook

SookADASlook + n

[K
02 1+ 8iiSiSlook2]  (7)

with Bi = Nas/On. The resulting conventional arrayresponse pattern is, thus, heavily depen-

dent on the conventional beampatterns steered at the signals. Figure 1 is the 17-element array.
Figure 2 is the conventional beampattern for the 17-element array of figure 1 where it is steered
to 0 = 1800 in uncorrelated noise. Figure 3 . the conventional array response which results
when a single 0-dB signal-to-noise ration (SNR) signal is present in uncorrelated noise. Note
that the array-response plot is a scaled version of the beampattern. The sidelobes in the beam-
pattern become spurious peaks in the array-response plot.
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III. ADAPTIVE BEAMFORMING

Adaptive beamformers rely on information about the noise field to imp: ove signal
detection performance and are capable of extremely high resolution, low bias, and interference
rejection. In some cases, adaptive beamformers lack the robustness of conventional beam-
formers. Nevertheless, the strengths of adaptive techniques are considerable, and they offer a
powerful tool for target detection and localization.

One outstanding issue is the impact of an array's conventional beampatterns on its
adaptive array response. One might argue, on purely heuristic grounds, that an array that
performs poorly using conventional techniques will also have relatively poor adaptive perfor-
mance. In fact, this is the case. However, we wish to make this relationship more quantitative
and relate it to signal detection.

We consider two adaptive beamformers. The first is the minimum-energy (Capon's)
beamformer. This is closely allied with the maximum-entropy beamformer described by Burg.
The second is the music or eigenvector beamformer which is currently a topic of much interest.

Given a noise field described by a cross-spectral matrix R, the minimum energy beam-
former selects a fi!ter vcctor Wlook which minimizes the output power W lookRWlook subject
to the constraint that W*iookSlook = I where Slook is an ideal plane wave in the look direction.
The solution to this constrained optimization problem is found by the method of Lagrange
multipliers. We write

F = W*RW + X(W*S - 1)

and set

aF SF aF
- 0 ,- 0 ,and - = 0
W aW * ax

The familiar minimum energy steering vector is thus

R-S
w = , (8)

S R-IS

and the output power of the minimum energy beamformer is

PME = W*RW = .. ] R [• -S] - (9)
<s J. Sook ,Slook

Return to the noise model of (6), R = ADA* + a2-I, and assume that the number of
signals K is less than the number of array elements N. We note that, provided some basic array
design criteria is met, both A and ADA- are rank K matrices. Also, since D is positive-definite,
ADA * is positive semi-definite. We can then write ADA* in terms of its eigenvalues and
eigenvectors as

4



K
ADA*i iv iv (10)

where the eigenvalues ki are all strictly positive. The space spanned by the K eigenvectors of
ADA* associated with positive eigenvalues is also the space spanned by the columns of ADA*

the signal vectors. This space is called the signal subspace.

With the result of (10) and the fact that

N

i~=1

for any set of orthonormal vectors [Vi} of length N, we can write

K Nm R =+ .)iv2 + a i2 "i 0211)
R =~ (~ 4 C)ViVti + n a i1 7(I

i- 1i=K+ I

Thus, the K largest eigenvectors (those associated with the K largest eigenvalues) form a basis
for the space spanned by the K signal vectors. The (N-K) smallest eigenvectors are orthogonal
to the signal subspace and form a basis for the noise-only or noise subspace. Furthermore, the
(N-K) smallest eigenvalues are all equal to the noise power O.

The second of the two adaptive beamforms we consider, the music beamformer
(Johnson, September 1982, and Schmidt, 1979) takes advantage of the orthogonality of the
noise-only eigenvectors with the signal vectors. The output of the music beamformer has the
form

I
PMUSIC N (12)r N

Slook I - ViVj Slook

Peaks in the MUSIC response plot corresponding to signal directions of arrival occur when
Slook is in the signal subspac and the denominator of (12) is zero. Equation (12) is Johnson's
(August, 1982) implementation of this beamformer.

Before investigating the array response of these adaptive beamformers, we look at the
adaptive beampatterns. An adaptive beampattern results when a filter vector Wsteer such as
the vector of (8) is fixed and I Wsteers 2 is plotted as we sweep an ideal plane-wave S through
all directions of arrival. The beampattern is a visual picture of the relative sensitivity of the
array to various arrival directions while steered with Wsteer.

For the conventional beamformer, the beampattern ISsteerS 2 is independent of the
noise field. Since the selection of the adaptive steering vector depends on the noise field,
however, this is not the case for the adaptive beamformer. The beampattern will be heavily

5



dependent on the noise field. Figure 4 is the beampattern of the minimri-energy (ME) beam-

former of the array of figure 1 steered to 0 = 1800 when a 0-dB SNR signal is present at 0 = 300

in uncorrelated noise.

At least one property of adaptive beampatterns can be explored, however. Return to

expression (8) for the minimum-energy steering vector. If we write the spectral decomposition

of R as

N

R = v
i= l

with AI A .
- AN and recall that

N I
= i ViVi'.

then the beampattern becomes:

I

iWsteerSI2 = , 21(R-lSsteer)*S12 with y =R _

Ssteer steer

= 2 1 [[N I , - * S

A ViVM2  Ssteer
i= I i

N 1 2

=2 A- V!S with o, = Vsi I I steer

Note that for the case of K signals, Xi >> a2 i=!,2....,K. Thus, the contribution to the beam-

pattern due to the signal subspace eigenvectors is much less than that due to the noise

subspace. We can then write that

N * 12

sWteerS {  .2 _V S

If we look in the direction of one of the signals (i.e., let S = Ssignal), then the adaptive beam-
pattern will have a value

IWsteerSsignal I i=2 l XVSsignal 2 0 (13)

due to the orthogonality of the signals with the noise subspace.

6



This is the important principle of null placement. The adaptive beamformer tries to
place nulls in the beampattern in the direction of the interfering signals. This, of course, is how
the minimum-energy beamformer minimizes output power. Note in figure 4 that the ME
beampattern has a value of -- 66 dB at O = 300. In fact, if the signals are of infinitely high
SNR, the nulls will be perfect. The MUSIC beamformer, by excluding the signal space eigen-
vectors from its projection matrix

N

i=K+l Xi

effectively increases the SNR of the signals and the nulls are perfect regardless.

7



IV. ADAPTIVE ARRAY RESPONSE AND APPROXIMATION

Next we will investigate the array response of the adaptive beamformers. Once again
return to expression (8) for the minimum energy steering vector. With M and the ai's as before,
we have

Wsteer = pR-lSsteer

N I
= A ViV1" Ssteer

"= Xi

N AN

AN i=l Ai

[U N N N
- I - av i - Z aiV i + S t

- N steer - -" i] (14)'kN x. _

If the signal plus noise field is that described by (6), then we can take advantage of the
multiplicity of the smallest eigenvalue (AK+ ! = \K+2 ; .=. a O) to write

F K A 2

Wsteer ~steer a jv (15)

Also, the K largest eigenvectors span the signal space. With Si representing the ith unit norm
plane-wave signal (i 1,2 ... , K), we can perform a change of basis and write

Wsteer Lsteer WiS (16)

where the Wi's are (as yet undetermined) complex weights.

We proceed to derive an approximation for the adaptive array response in a field of K
discrete signals and uncorrelated noise of power a?. Since Wsteer z pR-I 5 ster' we see thatis ti

nsteer = MR- II II Ii

8



The output power of the minimum-renergy (ME) beamformer is then p,,ven by

PME S RI
steer steer

Ssteer steer Z

a21n
(17)

K

I1- Wisteens

The output power of the MUSIC beamformer is given by

PMUSIC rN

Ssteer iZX -VViste

In a similar fashion, we derive:

I
I'MUSIC rN a2N

steer ste ckVr+iNf

a2 U=K+I Xii ter

with i V~isteer

I

a_2ee [~ steer - eivi]

K

I - WisteerSi

Which is the same as equation (17).

9



One way to evaluate the weights W would be to calculate the eigenvectors and eigen-

values of R and, given the signal vector Si, change bases from (15) to (16). This would be cum-
bersome, however, and little insight would be gained. Therefore, we take another !ack. For any
given steering direction Ssteer , we require that perfect nulls be placed in the adaptive beam-
pattern in the direction of each of the K discrete signals. That is, we require that

S.12 r K W **-12=
Wsteer 0 - steerSj - =  WiSiS = 0

for j 1,2, ..., K. This gives rise to a system of equations:

I I2 . SISK W1  SISsteer

S2$2 I W2  S2Ssteer (18)

_ I WK SKSsteer

In another notation:

A*A "{W2 7 ASsteer (19)

where A is the N x K matrix whose columns are the signal vectors, as before. The weights are,
thus, a function of steering angle and are related to the conventional beampatterns.

With the weights from (19), the minimum energy and MUSIC response plots are

approximated by

2

PABF -- (21)

SsteerA(A A)lA*Ssteer

Looking at A*A in expression (18), we see that if the signal vectors are mutually orthogonal,
the cross terms are zero and we have the result that W i = S Ssteer" In general, they are not. The
S.Si represent sidelobe levels in the conventional beampatterns. Provided the source arrival
directions are greater than a beamwidth apart, however, the magnitude of the cross terms is
small. The terms are small in the same sense that interelement correlations in isotropic noise

are small if elements are a correlation length apart. Thus, we assume that A* A is a diagonally
dominant matrix and (A*A)-l ".

10



Finally, we have an approximation for the adaptive array response (valid in the side-
lobe region):

PABF K (22)

l---~ ~ IisteerI

i=lI

This relates the adaptive array response to the conventional beampatterns steered at each of the
discrete signals.

iI



V. VALIDATION OF APPROXIMATION

In a series of simulations, expression (22) was validated. Figures 6 through 19 show
plots of the actual ME array response and the adaptive beamforming(ABF) approximation (22)
for the 20-element half-wavelength line array of figure 5. Two signal plus noise fields were used.
In the first, a single 20-dB SNR signal was present at 0 = 300 in uncorrelated noise. For the
second, three 20-dB SNR signals were present at 0 = 300 , 900, and 135'. Included in the plots
are some conventional beampatterns steered at discrete signals normalized to the output power
in the direction of the signals. Also included are details of the array-response pattern in the
sidelobe region. Notice in figure 7 the high level of agreement between the actual ME array
response and our ABF approximation. Also note how closely the ABF response resembles a
scaled version of the conventional beampattern of figure 6. MUSIC beamformer array-
response plots are not shown in this series, but it was found that MUSIC array responses were
nearly identical to ME array responses in the sidelobe region.

Figures 10 and I I are a set of plots for a 20-element quarter-wavelength line array in

the second noise field. Here we also see good agreement between the actual ME array response
and the approximation. Figures 12 through 16 comprise another set with the same noise fields
and the 17-element Mill's cross array (figure 1).

Of particular interest is figure 15. A high spurious peak in the array-response plot
occurs at --0 = 2700. The approximation appears higher than the actual peak here. We also see
in this figure that the conventional beampattern steered at the second signal (0 = 900) has a
high sidelobe at 0 = 2700. This sidelobe manifests itself as a high peak in the array-response
plot at that location. Thus, this peak is a characteristic of the array and not of the noise field.

The final array type used in this series was a random planar array in which the
elements were distributed uniformly on a circle. Figure 17 shows a random circle of diameter
6 wavelengths. The conventional beampatterns in the plots which follow show a much different
structure than those of the line arrays or the deterministic Mill's cross array. The patterns are
much less regular and the sidelobes less pronounced. This is a characteristic of random arrays.
Figures 18 through 21 are in a series identical to those previous for the random circle.

It is instructive to review the assumptions which led to expression (22), an approxima-
tion for the ABF array response in the region away from the signals. The first was that the
signal plus noise field consists of K signals in uncorrelated noise of power U2. The second was
that the nulls in the beampatterns are perfect. The third was that (A*A) -- I. This last is most
open to question. For one thing, expression (22) now has a singularity wherever

K

SSSsteer 12 > 1 (generally near the signals).
i i

As a bound on I(A*A) - - III, we have

III - (A*A)-III < II AAII (23)
I - III - A*AII

12



(Appendix I). As a typical value for I - A*Al consider that for a random array, IS*S.l2 are

random variables with mean I / N and variance I/N 2 provided the signals are greater than a

beamwidth apart. Then,

I K K
II - A*AII - Y ISiSji2

K i=I j=l
iqj

k2 -K I K-I

K N N

and

SK-I

NIII - (A*A)li --

K-I

1- N

For K - 3 and N 20, this value is = .46.

We can rewrite expression (22)

PABF - K

S SiSsteerl
j=lI

by writing it as a geometric series:

ABF = [ + SiSsteer 1 [SSsteer3 +

1 20

This could be truncated for small xISiSste1 2 to

PABF - 0nI + IS iSsteerI2 (24)

This is very similar to expression (7) for the conventional beamformer output power. Regard-

less of how we express it, however, it is clear that the adaptive beamformer, as well as the
K

conventional, has a spatial spectrum which is dependent on the term Y ISiSsterI2 .
i3I

13



VI. AN EXAMPLE USING A RANDOMIZED ARRAY

particularly dramatic example of the impact of IS Ssteer12 on the adaptive beam-

former is shown in the following series of plots. Figure 22 is of a 20-element rectangular array.

Figure 23 shows the conventional beampattern steered at 0 = 150. There is an exceptionally

high sidelobe at -0 = 1670. Figure 24 shows the ME array response of this array to a signal

plus noise field consisting of a single 0-dB SNR signal at 0 = 150 in uncorrelated noise. The

tremendous (about 7.5 dB) spurious peak at =0 = 1670 arises from tne array. It would certainly

be counted as a false detection if not recognized as such.

As previously suggested in comments on the random circular array, beampatterns of

random arrays fail to display to extremely high sidelobes which arise due to the symmetries in

most deterministic arrays. By randomizing an array (i.e., adding a random component to the

element position vectors) peak sidelobes can be reduced. The effect on signal detection is that

spurious peak levels are decreased.

With this in mind, the deterministic positions Z =[ x] of the rectangular array of

figure 22 were perturbed by [y]. The "X and - random variables (measured in wavelengths)

were selected uniformly on the interval [-t/ 2, +e/ 2]. Selection of the parameter f allows one to
move between the deterministic array (e = 0) and the totally random array (e = .5 in this case).
Figure 25 through 27 show the conventional beampatterns steered to 0 = 150 ac, the randomiza-

tion parameter e is increased from 0.1 to 0.5. For small perturbation (e = 0.1, 0.3),the peak at

0 = 1671 is still present although with somewhat less magnitude. At higher values (f = 0.4, ... ),

the array is, effectively, totally random and the deterministic peak is submerged in the random

pattern.

Figures 28 through 30 show the corresponding ME array-response plots. For the deter-

ministic and slightly randomized arrays, the spurious peak is pronounced but decreases rapidly

as the array is more random. Figure 31 displays graphically the correspondence between peak

sidelobe level (in the conventional beampattern) and peak spurious peak level (in the array

response). It also displays the effectiveness of using randomization to decrease both.

14



VII. SPURIOUS PEAK ESTIMATOR FOR RANDOM ARRAYS

For an array in which the element position vectors are random, the quantity

N N i Cu (Kl - Ks te e r,Z n - Z m )N N

ISiSsteer 1 b = i tZe se(25)
N2  n=i m=l

is a random variable provided S, and Ssteer are greater than a beamwidth apart. It has a
probability density function given by

1 b _

f(b) -/e - a-  b > 0 (26)
02

where u2 -I I/N (Steinberg, 1976, eq. 8.18). This density has mean I/N and variance I/N 2 and
represents the probability that the sidelobe level will attain a certain value.

If we assume that the beampatterns are independent of each other, then the sum

K

y = IS iSsteert
"=

has a probability density function g(y) given by

g(y) = I yK-I e-y/0 2 ; y > 0 (Appendix 2). (27)

(K- )!(2)K

The output power of the adaptive beamformer for a random array is, thus, a random
variable in the region away from the signals. The transformation is

n nPABF K

I - l I Ssteer12

The probability that y is greater than or equal to I and tne output power is infinite away from

any of the signals is

e- /  + + ... +
02 2! (K 1)!

15



which is negligible for most reasonable choices of K and N > K. The output power PABF' in

the region away from the signals, has a probability density function h(p) given by

h(p) = L'- ] exp L [ i ;pI--- n (28)
p2 (K - 1)!(a2) k  P a P

and a distribution function

p

h(p) f h(t)dt

n

1 -exp - -• !+ I - + ..

+ I(29)(K - 1)! 1 , a2

We develop our estimate for a peak spurious peak in much the same way that Stein-

berg (1976) arrives at a peak sidelobe estimator. Since the beampatterns of an array are
completely described by some number of independent samples n (determined from the correla-
tion properties of the beampattern, and the array-response plot is a function of those beam-
patterns) it follows that the array-response pattern is described by n samples also.

For a random circular planar array of diameter D, the correlation structure is

described by

where u is related to the angle between look directions y by

u =-±2 sin )

and j I is the first order Bessel function of the first kind. The number of independent samples or
array parameter n is given by

16



if
n= (30)

sin- [.60984 -1

The probability that a peak spurious peak will not exceed some threshold 0 is then given by

Pr[peak spurious peak P 1] = [H(p]n , (31)

where H(ft) and n are given by (29) and (30).

A number of 20-element random circular arrays of radius D = ]OX were generated. In a
noise field consisting of 0-dB white noise and three signals with various arrival and strength
structure, minimum-energy array-response plots were calculated. In 50 trials, a peak spurious
peak was found and a cumulative histogram of these values appears on figure 32. Also plotted
is [H(p)]n against the threshold 1 in dB for the appropriate parameters.

Tr

n= -51
sin-'[.60984/ 10]

On i
Si I

N 20

K = number of signals = 3. (32)

This shows remarkable agreement!

Figure 33 displays a series of [H(p)]n against P for a variety of 20-element random

circle arrays. The signal plus noise field is assumed to consist of three signals in O-dB uncorre-
lated noise. The independent variable is the array parameter n or, equivalently, the array size.
For a fixed number of elements, an increase in diameter while decreasing mainlobe width (and
thus increasing resolution capabilities) also has the effect of raising the probability of spurious

peak threshold exceedance (thus, increasing the probability of false detections). Peak-sidelobe
estimates for the same arrays are displayed in figure 34. The correspondence between peak
sidelobes and peak spurious peaks is clear.

Figures 35 through 38 illustrate the ME array-response plots for some realizations of

20-element circular random arrays of various diameters. The signal plus noise field consists of
three signals, 20-dB SNR at 0 = 0', 10-dB SNR at 0 = 450, and 0-dB SNR at 0 = 900, in
uncorrelated noise. Figure 35 also shows the MUSIC array response and the conventional
array response. Note the appearance of spurious peaks away from the signals in the adaptive
array responses.

For a random line array of length L, the correlation structure is described by

17



!sin (+Lu)

(Lu

where u is related to the steering angle 0 measured from broadside by

u-sin0-sinO 0

Here, 00 is the steering angle. The array parameter n is

L
n - [I + Isin 001]

The array parameter is, thus, dependent on steering direction (or, in the context of signal detec-
tion, signal direction of arrival). Since the signals arrive from all directions, we require a repre-
sentative value for n. For this we use

L I f 2 L 2

n.' I +-f Isin OidO [1+-1] (33)

Figure 39 displays [H()]n against P for a 20-element line with three signals in 0-dB
uncorrelated noise. The independent variable, as in the case of the circle array, is the array
parameter or, equivalently, the lii.e length. Figures 40 through 43 are representative ME array-
response plots for random lines of various lengths. The signal plus noise field consists of a
20-dB SNR signal at 0 = 00, a 10-dB SNR signal at 0 = 450, and a O-dB SNR signal at 0 = 90'.
Figure 40 also displays the MUSIC beamformer and conventional array response.
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VIII. DETECTION PROBABILITIES FOR MINIMUM-ENERGY
PROCESSING WITH RANDOM ARRAYS

The peak spurious peak impacts the probability of detecting a weak signal in an
obvious way. In this section, we evaluate the probability of detecting a signal when minimum
energy processing is used with a random array.

Suppose that the noise field is described by a correlation matrix

R = N0 2 SoS* + Q (34)

where SO is the signal we are interested in detecting and Q describes the remainder of the noise
field. In particular, suppose the background noise field consists of K interfering signals Sl

Sk of powers a I,.... oik respectively in uncorrelated noise of power 0n Then,

Q = Na2 SIS* + ... + N *kk + 2I. (35)

Here we assume that the interest signal So is in the region away from the K interferers.

With R as described by (34), a useful fact is that

SQ-1S Q- 1R-I = Q-I _ - s o S °

SQ 1 So + I /No

The minimum-energy filter vector Wo when the array is stored in the direction of the signal So
is then

Wo-R-1 So I

0 0

FQ- - 1 T S0 SQ
SQ- 1 So SoQ1  S

So* Q-Ioso+ I/-Na 2
SS -I S +* I/N-

so* Q-1 Q-Is°0-o

SO Q-! So0 + l/Na2 o

Q- 1  S0 So Q- S
S*Q-i So + I/N 2

s -0  So Q-1 so So Q-I S

So* Q-! So + I/ No29
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So Q-I So

Q-1 S -SQ 1 So. l/Noa
S~1 0  So SQ SSo* Q- I So So* Q- 1 So

0 0
So I + I/No2

Q-1 S0

So Q-1 So

Hence, the output power of the ME beamformer in the direction of the signal of interest is

PME Wo RW o

0 Q-1 Q-1 S0

S° Q-So LNs So + Q IS Q-1 S

Na2 + (36)
So Q-! So

Since Q contains no signals in the direction of SO, our earlier sidelobe approximation is

valid for the second term in (36). Writing

I

So Q-1 So

we have that

n

K

- So 0 12

L= I

If the array is random, y is a random variable with a probability density function

h(y) = exp - I-_-f

y 2(k - I)!(02) K  Y a2  Y

n (37)
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This is just equation (28) with y in place of p. The output power p in the direction of the inter-
2est signal S o is then Na2 + y and is a random variable with a probability density function

j(p) = [ - I - Q ]

(p - No2) 2 (K - I) (u2) K  p

exp [p- " ;]]> N2 + a2 (38)
U2 p - N a2 n

There are K + I signals in the noise field counting the interferers and the signal of inter-
est. In the region away from any of these signals, the array-response level is a random variable
with a probability density function similar to h(y) only with K + I replacing K. It is

yexp I • y on
y2K! (a2)K+ I y a2 y

and the corresponding distribution function is

y

L(y) =f Q (t)dt

'(39

Compare this with equation (28).

As presented in the previous section, the peak spurious peak is the largest of the n inde-

pendent samples of the array-response pattern where n is the array parameter. It is a random

variable. Let r represent the level of the peak spurious peak and me(r) be its probability density

function. The density re(r) is unknown, but the distribution function M(r) is found to be

M(r)- f m(t)dt = [L(r)] .(40)
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See equation (3 1).

For probability of signal detection, we take the probability that the signal peak p will
exceed the peak spurious peak r. Assuming that p and r are independent, this is

Pr[p > r] = ff j(p)n(p)drdp

p>r

" f [f m(r)dr ]j(p)dp
Na 2 +a 2  02

S nl nf

" f M(p)j(p)dp

Na 2 + a
S nl

CU) n

-f [L(p)] j(p)dp (41)

N q2 + -
S n

where j(p) is given by (38) and L(p) by (39).

Making the substitution a2 = I/ N and the change variables x I/ia2 (1 - a2-Jp),
this integral becomes

Pr[p > r] = f n~) j(p)dp
Na 2 + a2

01 n

= f(6 l-x + X6 +1 +
ex NI > dx1

6X + (I - )N/
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with 6 = No2 , a2. This integral was evaluated numerically.

Figure 44 is a plot of this probability against input SNR (o2/G2) for N = 20, n = 51,
and K = 2. This corresponds to signal detection with a 20-element random circular array of
diameter D = 10 X in the presence of two interferers.

Following figure 44 is a series of plots displaying precisely this situation. A series of
20-element random circular planar arrays were generated. The "background" noise field
consists of 0-dB white noise and two interferers. The interferers are located at 0 = 450 and 900
and each has a SNR of 3 dB. The signal of interest - the one we want to detect - is located
at O = 1800.

In figure 45, the signal of interest has a SNR of-10 dB. Referring to figure 44, we see
that, at this SNR, there is an extremely high probability that the signal peak will exceed the
peak spurious peak. Indeed, the signal of interest is easily detected using minimum energy
processing.

In figures 46 through 48, the interest signal has a SNR of -13.2 dB. At this source level,
the probability is "- .9 that the signal peak will exceed the peak spurious peak. For these three
random arrays at this source level, the signal is easily detected as we would expect.

In figures 49 through 51, the interest signal has a SNR of -15.5 which corresponds to
a probability of = .5. Here, we see that the signal is being lost in the side region noise. In
figure 49, the signal peak is about equal in height to the peak spurious peak. In figure 50, for
another realization of the random array, the signal peak is the highest peak. In figure 51, the
signal is clearly lost in the noise.

The final figure of this series, figure 52, shows the minimum-energy array response for
this noise field and a representative array when the SNR of the interest signal is -18.0 dB. This
corresponds to a probability of =. I and, as expected, the signal is lost in the noise.

Figures 53 and 54 are similar to figure 44. Both show the probability that the signal
peak exceeds the peak spurious peak (i.e., the detection probability) for 20-element random
arrays against input SNR. The first, figure 53, is for a noise field containing two interferers.
Curves (left to right) are for n = 31, 41, 51, 71, 82, and 103 corresponding to circular planar
arrays of diameters D = 6X, 8X, lOX, 14X, 16X, and 20k respectively. Note that for a fixed
number of elements, increasing the physical size of the array decreases the probability of signal
detection.

Figure 54 is for a noise field containing three interferes. Curves (left to right) corres-
pond to array diameters of 6A, 8X, lOX, 14X, and 20K. Comparing figures 53 and 54, we see
that increasing the number of interferers complicates the noise field and, consequently, the
array-response pattern making detection of weak signals more difficult.
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Figure 1. Mill's cross array. 17-element; half-wavelength.
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Figure 2. Conventional beampattern. Mill's cross array; steered at 1800.
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Figure 3. Conventional array response. Mill's cross array; one 0-dB SNR signal at 1800.
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Figure 4. Adaptive ME beampattern. Mill's cross array; steered 180, one signal at 300.
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Figure 6. fAR and CBP. 20-element line; half-wavelength.
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Figure 8. AAR and CBP. 20-element line; half-wavelength.
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Figure 9. AAR detail. 20-element line; half-wavelength.
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Figure 10. AAR and CBP. 20-element line; quarter-wavelength.
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Figure 11. AAR detail. 20-element line; quarter-wavelength.
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Figure 12. AAR and CB3P. Mill's cross array; half-wavelength.
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Figure 13. AAR detail. Mill's cross array; half-wavelength.
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Figure 14. AAR and CB3P. Mill's cross array: half-wavelength.
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Figure 15. AAR and CB3P. Mill's cross array; half -wavelength.
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Figure 16. AAR detail. Mill's cross array; half-wavelength.
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Figure 18. AAR and CBP. 20-element random circle; diameter =6 wavelengths.

32



1-

0.9-

0.8-

0.7-

0.6,-

o 0.5

0
0. 0.4-

0.3-

0.2-

0.1

0 45 90 135 180 225 270 315 360

BEARING

Figure 19. AAR detail. 20-element random circle; diameter = 6 wavelengths.
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Figure 20. AAR and CBP. 20-element random circle; diameter = 6 wavelengths.
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Figure 21. AAR detail. 20-element random circle; diameter =6 wavelengths.
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Figure 24. ME array response. Rectangular array; one signal.
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Figure 26. Conventional beampattern. Randomized rectangle epsilon = 0.3.
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Figure 26. Conventional beampattern. Randomized rectangle epsilon = 0.3.
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Figure 27. Conventional beampattern. Randomized rectangle epsilon 0.5.
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Figure 28. ME array response. Randomized rectangle epsilon =0.1.
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Figure 30. ME array response. Randomized rectangle epsilon =0.5.
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Figure 35. ME array response. Random circular array diameter = 6 wavelengths.
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Figure 36. ME array response, Random circular array diameter = 8 wavelengths.

41



40-

30-

20-

0
C 10 

-L

0- f

-10-
-t -

0 45 90 135 180 225 270 315 360
BEARING

Figure 37. ME array response. Random circular array diameter =10 wavelengths.
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Figure 38. ME array response. Random circular array diameter = 14 wavelengths.
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Figure 39. Adaptive spurious peak. 20-element line; 3 signals.
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Figure 40. ME array response. 20-element random line; length = 10 wavelengths.
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Figure 41. ME array response. 20-element random line; length = 20 wavelengths.
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Figure 43. ME array response. 20-element random line; length 50 wavelengths.
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Figure 45. ME array response, Interest-signal SNR -10.0 dB.
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Figure 46. ME array response. Interest-signal SNR = -13.2 dB, case 1.
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Figure 47. ME array response. Interest-signal SNR = -13.2 dB, case 2.
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Figure 48. ME array response. Interest-signal SNR = -13.2 dB, case 3.

47



17

16

15-

14-

13-

12-

11

10-

w 8-

6-

5-

3-

-' ' '

0 45 90 135 180 225 270 315 360
BEARING

Figure 49. ME array response. Interest-signal SNR -15.5 dB, case 1.
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Figure 50. ME array response. Interest-signal SNR = -15.5 dB, case 2.
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Figure 51. ME array response. Interest-signal SNR -15.5 dB, case 3.
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Figure 52. ME array response. Interest-signal SNR = -18.0 dB, case 1.
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Figure 53. Detection probability. Random circular array; N = 20, K = 2.
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Figure 54. Detection probability. Random circular array; N = 20, K = 3.
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APPENDIX I

Theorem

If I P1 I < 1, then (I - P)- 1 exists and III - (I -P)- 1 I <f 1I

Proof.

First, let x # 0. Then

(1- IPI1) * 110f >0

so that (I - P)x *#0 and .'. (I - P)- exists.

Next, we will show that I I(I - P)- 1 5 1- 1 1

From (I -P)(I - P)- (I -P)- I - P(I -P)- I

we have that (I -P' 1 I+P( - P)-1

*.II -P)'If 1111+ IPI *11(- P)-' 11 = U+1PII lJ- a PY'Ill

(I - IPHL I I( -P)- 1

Finally, from (I - P) (I - P)-I (I - P)- - P(I - P)- I

we have that I - (I - P)- - P(I -P-I

I1- IIPII
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APPENDIX II

Theorem

Let X IX 2, ... , XK be i.i.d. random variables with a probability density function

f(xi) = - e , x> 0; i = 1,2, .... K.
U2

Then Y = X + X2 + ... + XK has a distribution with a p.d.f.

g(y) = yK-I e-Y a2 y> 0

(K- 1(02) K

Proof:

The Laplace transform of one of the Xi s is

(00

Lr(f(xi)) = e-rXi f(xi)dxi

0

erx I eXlr2dx

C
2

00

*00

1 e- 2) xd

I ++

954

02

1 e - +t I0

+ +o2r
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The Laplace transform of X is.

K K 1

Lr(g(y)) = Lrf(xi)) = [1+ a2r]- K (A-1)

L=I L=I 1 + o 2 r

Here, Lr(g(y)) is analytic in the strip corresponding to Re[r] -- _l/ 2. Rather than take the

universe Laplace transform, we just take the Laplace transform of the p.d.f. in the proof state-

ment. This is

Lr(g(y)) = Cery • YK- l e - y/ 2 d y

(K- )!(,2) K

y K-1 r-
e_ e 2 dy.

(K 1)(a2)
K

Integrating by parts with u y yielding

(u + dyandd (K -1!+2 K(K K-22)

- yK

du =_ dy and dv +-1] +T

7[(r + j(K - l!)(2)K

so that V = e C 2 ) gives

-0 y -

Lg(y)) re dy

o - (K (K-
2)!( 2)K
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Continuing in this fashion,

Lr(g(y)) = e- 2 (A-2)

= [! + ro2 ]-K

Noting the equality between (A-I) and (A-2) we now have the result.
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